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Abstract. This paper provides necessary and sufficient conditions for the
existence of solutions for some important problems from optimization
and non-linear analysis by replacing two typical conditions—continuity
and quasiconcavity with a unique condition, weakening topological vec-
tor spaces to arbitrary topological spaces that may be discrete, con-
tinuum, non-compact or non-convex. We establish a single condition,
y-recursive transfer lower semicontinuity, which fully characterizes the
existence of y-equilibrium of minimax inequality without imposing any
restrictions on topological space. The result is then used to provide
full characterizations of fixed point theorem, saddle point theorem, and
KKM principle.
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1. Introduction

Ky Fan minimax inequality [1,2] is probably one of the most important re-
sults in mathematical sciences in general and non-linear analysis in partic-
ular, which is mutually equivalent to many important basic mathematical
theorems, such as the classical Knaster Kuratowski Mazurkiewicz (KKM)
lemma, Sperner’s lemma, Brouwer’s fixed point theorem, and Kakutani fixed
point theorem [3-5]. It has also become a crucial tool in proving many exis-
tence problems in various fields, especially in variational inequality problems,
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mathematical programming, partial differential equations, impulsive control,
equilibrium problems in economics, various optimization problems, saddle
points, fixed points, coincidence points, intersection points, and complemen-
tarity problems.

The classical Ky Fan minimax inequality typically assumes lower semi-
continuwity and quasiconcavity for the functions, in addition to convexity and
compactness in Hausdorff topological vector spaces. However, in many sit-
uations, these assumptions may not be satisfied [3]. The function under
consideration may not be lower semicontinuous and/or quasiconcave, and
choice spaces may be topological vector spaces. Similar situations are true
for fixed point theorems, saddle point theorems, coincidence theorems, and
intersection theorems (including various forms of FKKM theorems). As such,
much work has been dedicated to weakening these conditions as in [6-35]
and the references therein, among which some seek to weaken the quasicon-
cavity /semicontinuity of function, or drop convexity/compactness of choice
sets, while others seek to weaken Hausdorff topological vector spaces to topo-
logical vector spaces, Lassonde type convex spaces, Horvath type H-spaces,
generalized convex spaces, and other types of spaces.

However, almost all the existing results only provide sufficient conditions
for the existence of equilibrium. They are also based on strong topological
structures, especially topological vector spaces. In addition, to have these ex-
istence results, some forms of convexity/lattice and continuity of functions
are assumed. While it may be the convex/lattice structures that easily con-
nect optimization or existence problems to mathematics, in many important
situations, such as those with discrete choice sets, there are no convex or
lattice structures. As such, the intrinsic nature of the existence of solution in
general case has not been fully understood yet. Why would a problem have a
solution? Are both lower semicontinuity and quasiconcavity (or their weaker
forms) essential to the existence of equilibrium?

This paper provides complete solutions to the problem of minimax in-
equality and other related problems by replacing the assumptions concerning
continuity and quasiconcavity with a unique condition, passing from topo-
logical vector spaces to arbitrary topological spaces that may be discrete,
continuum, non-compact or non-convex, and the function that may not be
lower semicontinuous or does not impose any form of convexity-related condi-
tion. We define a single condition, v-recursive transfer lower semicontinuity,
which fully characterizes the existence of equilibrium of minimax inequality
without imposing any kind of convexity or any restrictions on topological
space.

It is shown that ~-recursive transfer lower semicontinuity is necessary,
and further, under compactness, sufficient for the existence of equilibrium of
minimax inequalities for general topological strategy spaces and functions.
We also provide a complete solution for the case of any arbitrary choice
space that may not be compact. We show that 7-recursive transfer lower
semicontinuity with respect to a compact set D is necessary and sufficient for
the existence of equilibrium of minimax inequalities for arbitrary (possibly
non-compact or open) topological spaces and general functions.
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Since minimax inequality provides the foundation for many of the mod-
ern essential results in diverse areas of mathematical sciences, the results not
only fully characterize the existence of solution to minimax inequality, but
also introduce new techniques and methods for studying other optimization
problems and generalize/characterize some basic mathematics results, such as
the FKKM theorem, fixed point theorem, saddle point theorem, variational
inequalities, and coincidence theorem. As illustrations, we show how they
can be employed to provide full characterizations of the existence of fixed
points, saddle points, and intersection points. The method of proof adopted
to obtain our main results is also new and elementary—neither fixed point
nor KKM-principle approach.

The remainder of this paper is organized as follows. Section 2 states
the basic notation and definitions. Section 3 provides necessary and sufficient
conditions for the existence of solution to the Ky Fan minimax inequality
for an arbitrary topological space. Then, we develop necessary and sufficient
conditions for the existence of fixed points, saddle points, and intersection
points in Sects. 4, 5, and 6.

2. Notation and definitions

Let X be a topological space and D C X. Denote the collections of all
subsets, convex hull, closure, and interior of the set D by 2P, co D, ¢l D, and
int D, respectively. A function f : X — RU {£oo} is lower semicontinuous
on X if for each point 2/, liminf,_, f(x) > f(a'), or equivalently, if its
epigraph epif = {(z,a) € X X R: f(z) < a} is a closed subset of X x R.
A function f: X — RU {£oo} is upper semicontinuous on X if —f is lower
semicontinuous on X. f is continuous on X if f is both upper and lower
semicontinuous on X.

Let X be a convex subset of a topological vector space. A function
f : X — R is quasiconcave on X if for any y', %> in X and any 6 €
[0,1], min {f(y"), f(¥*)} < F(6y' + (1 — 6)y?), and f is quasiconvex on
X if —f is quasiconcave on X. A function f : X x X — R is diago-
nally quasiconcave in y if for any finite points y',...,4™ € X and any
y € co{y',...,y™}, mini<p<m f(y, %) < f(y,y) (cf. [35]). A function f :
X x X — R is v-diagonally quasiconcave in y if for any y',...,3™ € X and
y € co{yt,...,y™}, minj<p<m f(y,y¥) < 7. A correspondence F : X = X
is said to be F'S convex on X if for every finite subset {x', 2%, ... 2™} of X,
we have co{z', 2%, ..., 2™} C UL F(27)." A correspondence F : X =% X is
said to be SS convez if © € co F(z) for all x € X.? Tt is easily shown that a
function ¢ : X x X — RU{=+o0} is y-diagonally quasiconcave in z if and only
if the correspondence F' : X = X, defined by F(z) = {y € X : ¢(z,y) < v}
for all z € X, is FS convex on X.

IThe FS is for Fan [2] and Sonnenschein [36].
2The SS is for Shafer and Sonnenschein [37].
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3. Full characterization of Ky Fan minimax inequality

We begin by stating the notion of y-equilibrium for minimax inequality prob-
lem.

Definition 3.1 Let X be a topological space and v € R. A function ¢: X X
X — RU{+£oo} is said to have a y-equilibrium on X if there exists a point
y* € X such that ¢(x,y*) <~ for all x € X.

Ky Fan in [1,2] provides the following classical result on minimax in-
equality problem.

Theorem 3.1 [Ky Fan minimax inequality] Let X be a compact convex set in
a Hausdorff topological vector space. Let ¢: X x X — R be a function, such
that:

(a) ¢p(z,x) <0 for allz € X;

(b) @ is lower semicontinuous in y;

(c) ¢ is quasiconcave in x.

Then, ¢ possesses a 0 equilibrium y* € X.

Ky Fan minimax inequality has then been extended in various ways:
quasiconcavity is weakened to diagonal quasiconcavity, y-diagonal quasicon-
cavity, or transfer (v-diagonal) quasiconcavity; lower semicontinuity is weak-
ened to transfer lower semicontinuity or vy-transfer lower semicontinuity; com-
pactness is weakened to non-compactness; Hausdorff topological vector space
is weakened to topological vector space, Lassonde-type convex space, Horvath
type H-space, generalized convex space, etc. (cf. Fan [4], Allen [6], Ansari et
al. [7], Cain and Gonzélez [8], Chebbi [9], Ding [14], Georgiev and Tanaka
[15], Tusem and Soca [17], Karamardian [18], Lignola [21], Lin and Chang
[22], Lin and Tian [25], Nessah and Tian [26], Tian [28,29], Yuan [33], and
Zhou and Chen [35] among others). Yet, there are no full characterization
results available and the topological spaces are assumed to be topological
vector spaces.

In the following, we establish a single condition that is necessary and
sufficient for the existence of solution to a minimax inequality defined on
an arbitrary topological space. We begin with the notion of y-transfer lower
semicontinuity introduced by [28].

Definition 3.2 Let X be a topological space. A function ¢: X x X — R U
{+oo} is said to be y-transfer lower semicontinuous in y if for all x € X and

y € X, ¢(x,y) > v implies that there exists some point z € X and some
neighborhood N (y) of y such that ¢(z,y’) > « for all ¥’ € N (y).

We now introduce the notion of recursive diagonal transfer continuity.

Definition 3.3 Let X be a topological space. A function ¢: X x X — RU{4o00}
is said to be ~y-recursively transfer lower semicontinuous in y if, whenever
#(x,y) > v for 2,y € X, there exists a point z° € X (possibly 2° = y) and
a neighborhood V, of y such that ¢(z,V,) > 7 for any sequence of points
{24, ..., 2m 2} with ¢(z, 2™ 1) > v, ¢(z™7L 27 2) > v (21, 20) >
v, m=1,2,.... Here ¢(z,V,) > v means that ¢(z,y') > for all y’ € V,.
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Remark 3.1 In the definition of ~-recursive transfer lower semicontinuity,
y is transferred to z° that could be any point in X. Under ~-recursive
transfer lower semicontinuity, when ¢(z, 2™~1) > 7, ¢(z™ 71, 2m2) > 4,.. .,
#(z',2%) > v, we have not only ¢(z,V,) > 7, but also ¢(z™"1,V,) > ~,...,
o(z",Vy) > 7.

Similarly, we can define m-vy-recursive transfer lower semicontinuity in
y. A function ¢ is m-y-recursively transfer lower semicontinuous in y when
the number of points in the sequence is m. Thus, a function ¢ is y-recursively
transfer lower semicontinuous in y if it is m-y-recursively transfer lower semi-
continuous in y for allm=1,2....

Now, we are ready to state our main result on the existence of ~-
equilibrium of minimax inequality defined on a general topological space.

Theorem 3.2 Let X be a compact topological space, v € R, and ¢ : X x X —
RU{xo0} be a function with ¢(x,x) <~ for all x € X. Then, ¢ possesses a
v-equilibrium if and only if it is y-recursively transfer lower semicontinuous
my.
Proof Sufficiency (<). Suppose y is not a y-equilibrium point. Then there
is an x € X such that ¢(x,y) > ~. Then, by y-recursive transfer lower
semicontinuity of ¢ in y, for each y € X, there exists a point z° and a
neighborhood V,, such that ¢(z,V,) > v for any sequence of recursive points
{24 2 2 with ¢(z, 2™ 7)) >, 0(2™ 7L, 2 72) >y, L o(2E, 20) > .
Slnce there is no y-equilibrium by the contrapositive hypothesis, z° is not a
~v-equilibrium, and thus, by ~-recursive transfer lower semicontinuity in y,
such a sequence of recursive points {z!,...,2™~1 2} exists for some m > 1.
Since X is compact and X C UyeX V,, there is a finite set {y!,...,y7},

such that X C UzT 1 Vyi. For each of such ¥, the corresponding initial point
is denoted by 2%, so that ¢(2',Vyi) > v whenever 29 is y-recursively upset
by z'. Since there is no 'y—equlhbrlum for each of such 2%, there exists z?,
such that ¢(z%, 2%%) > 7, and then, by 1-y-recursive transfer lower semicon-
tinuity, we have ¢(z%, Vi) > . Now, consider the set of points {z*,...,2"}.
Then, z* & V,i; otherwise, by ¢(z%, Vi) > ~, we will have ¢(z%,2") > 7, a
contradiction to the fact that ¢(z,x) <+ for all x € X. Thus we must have
Zl Q Vyl
Without loss of generality, suppose z! € V,2. Since z! € V2 and
(24, 29 >, (22, 2%) > . Then, by 2-y-recursive transfer lower semicon-
tinuity, we have ¢(2%,V,1) > v. In addition, ¢(2%,V,2) > ~. Thus, ¢(z%,V 1 U
Vy2) > v, and consequently 22 d Vy1 UV,2. Again, without loss of generality,
we suppose 22 6 V5. Since ¢(z%, 2%) > 7 by noting that 2% € Vs, ¢(2%,2') >
v, and ¢(z1 20 ) > 7, then, by 3-v-recursive transfer lower semicontinuity,
we have ¢(z*,V,1) > ~. In addition, since ¢(z*,2?) > v and (b(z 202) > ~,
by 2-v- recursive tranbfer lower semicontinuity, we have ¢(z*,V,2) > ~. Thus,
(23, Vyr UV,2 UVys) > v, and consequently 2z ¢ Vi UV,2 U Vys.
With this recursive process going on, we can show that z* ¢ VUV, U
s UVys, e, z* is not in the union of Vyr, Vyz, oo Yy for k= 1,2, T.
In partlcular, for k = T, we have 27 ¢ Vyr UV,2 ... UVyr, and thus, 2T ¢
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X C V1 UVpe...UV,r, a contradiction. Then, there exists y* € X, such
that (z,y*) <~ for all € X, and thus, y* is a y-equilibrium point of the
minimax inequality.

Necessity (=). Suppose y* is a y-equilibrium and ¢(z,y) >« for z,y €
X. Let 2 = y* and V, be a neighborhood of y. Since ¢(x,y*) < v for

all x € X, it is impossible to find any finite sequence {z',...,2™}, such
that ¢(2%,2%) > 7,...,6(2™, 2™ 1) > 7. Thus, the y-recursive transfer lower
semicontinuity holds trivially. O

Although ~-recursive transfer lower semicontinuity is necessary for the
existence of solution to the problem, it may not be sufficient for the existence
of y-equilibrium when a choice space X is non-compact. To see this, consider
the following counterexample.

Ezample 3.1 Let X =]0,1[and ¢: X x X — RU{£o0} be defined by ¢(z,y) =
T —y.

The minimax inequality clearly does not possess a 0-equilibrium. How-
ever, it is O-recursively transfer lower semicontinuous in y. Indeed, for any
two points z,y € X with ¢(z,y) = x —y > 0, choose ¢ > 0, such that
[y—e,y+e) C X.Let 2 =y+e€ X and V, C [y—e,y+e€]. Then, for any fi-
nite set {z1,..., 2" 2} with (21, 20) = 21 =20 > 0, (22, 21) = 22—21 > 0,
vy B(2,2mY = 2= 27 > 0, 0e, 2 > 2™ > 0 > 20 we have
d(z,y) =z—y > 20—y >0 for all y € V,. Thus, ¢(z,V,) > 0, which
means ¢ is O-recursively transfer lower semicontinuous in y.

Nevertheless, Theorem 3.2 can be extended to any topological choice
space. To do so, we introduce the following version of ~y-recursive transfer
lower semicontinuity.

Definition 3.4 Let X be a topological space and D C X. A function ¢: X X
X — RU {£oo} is said to be 7-recursively transfer lower semicontinuous
in y with respect to D if, whenever ¢(x,y) > v for z € X and y € D,
there is a point 2% € D (possibly 2° = y) and a neighborhood V, of y such
that (1) ¢(2’,y) > v for some 2’ € D, and (2) ¢(z™,V,) > v for any finite
subset {z!,...,2™} C D with ¢(2™, 2" 1) > ~, ¢(2™ 71, 2m72) > 4,...,
(21, 20) > .

The following theorem fully characterizes the existence of solution to
minimax inequalities for arbitrary topological spaces.

Theorem 3.3 Let X be a topological space, v € R, and ¢ : X x X — RU{£o0}
be a function with ¢(x,x) < for all x € X. Then, there is a point y* € X,
such that ¢(x,y*) < 7 for all x € X if and only if there exists a compact
subset D C X, such that ¢ is y-recursively transfer lower semicontinuous in
y with respect to D.

Proof Sufficiency (<). The proof is essentially the same as that of sufficiency
in Theorem 3.2 and we just outline it here. We first show that there exists
a y-equilibrium y* in D. Suppose, by way of contradiction, that there is no
~v-equilibrium in D. Then, by v-recursive transfer lower semicontinuity in y
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with respect to D, for each y € D, there exists 2 € D and a neighborhood V,,
such that ¢(z2™,V,) > ~ for any finite subset of points {z',..., 2™} C D with
d(zm, 2™ >y, (2™ 22 > L B(2,20) > 4. Since there is no
~-equilibrium in D by the contrapositive hypothesis, 2° is not a y-equilibrium
point in D, and thus, by ~-recursive transfer lower semicontinuity in y with
respect to D, such a sequence of recursive points {z1,...,2™71 2™} exists
for some m > 1.

Since D is compact and D C |J, < x Vy, there is a finite set {yt,...,yT} C

D such that D C |J, V,i. For each of such y’, the corresponding initial
point is denoted by z%, so that ¢(z*,V,i) > v whenever ¢(z*,2%) > ~ for
any finite subset {z%,... 2™} C D with 2™ = 2. Then, by the same
argument as in the proof of Theorem 3.2, we will obtain that z* is not
in the union of Vy1,Vy2,... . Vyr for k = 1,2,...,T. For k = T, we have
2T ¢ Vyr UVyz ... U Vyr, and thus, 2T'¢d D C U1T:1 Vyi, a contradiction.
Thus, there exists a point y* € D, such that ¢(z,y*) < for all x € D.

We now show that y* must be a y-equilibrium in X. Suppose not. Then,
there is © € X with ¢(z,y*) > 7, and thus, by ~-recursive transfer lower
semicontinuity in y with respect to D, there exists 2’ € D with ¢(2’, y*) > 7,
which means y* is not a y-equilibrium in D, a contradiction.

Necessity (=). Suppose y* is a y-equilibrium. Let D = {y*}. Then, the
set D is clearly compact. Now, let z° = y* and V- be a neighborhood of y*.
Since ¢(x,y*) < for all z € X and 2° = y* is a unique element in D, there
is no point 2! € D, such that ¢(z!,2°) > v or ¢(a’,y*) > v for some 2’ € D.
Hence, ¢ is y-recursively transfer continuous in y with respect to D.

Corollary 3.1 [Generalized Ky Fan’s minimax inequality] Let X be a topolog-
ical space, ¢p: X x X — RU{xoc} be a function, and vy := sup, ¢ x ¢(y, y).?
Then there is a point y* € X, such that ¢(x,y*) < sup,cx ¢(y,y), Vo € X if
and only if there exists a compact subset D C X, such that ¢ is y-recursively
transfer lower semicontinuous in y with respect to D.

Theorem 3.3 and Corollary 3.1 thus strictly generalize all the existing
results on the minimax inequality, such as those in Fan [1,2,4], Allen [6],
Ansari et al. [7], Chebbi [9], Ding [14], Lignola [21], Lin and Chang [22],
Nessah and Tian [26], Tian [28], Yuan [33], Zhou and Chen [35].

The following example about game theory shows that although the
strategy space is an open set and the payoff function is highly discontinu-
ous and non-quasiconcave, we can use Theorem 3.3 to assert the existence of
Nash equilibrium.

Ezample 3.2 Consider a game with n =2, X = X; x X5 = (0,1) x (0,1) that
is an open unit interval set, and the payoff functions are defined by

ui(th){l if (z1,22) € QxQ i=1.2,

0 otherwise

where Q = {z € (0,1) : z is a rational number}.

3When v = SUPye x ¢(y,y) = +00, any point in X is clearly a y-equilibrium with v = +o0.
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Let U(z,y) = ui(x1,y2) + u2(y1, x2). Define a function ¢ : X x X — R
by

¢(z,y) = U(z,y) = U(y,y)-

It is clear that ¢(x,x) <0 for all z € X. Then, ¢ is neither (O-transfer)
lower semicontinuous in y nor (diagonally) quasiconcave in z. However, it is
O-recursively transfer lower semicontinuous in y. Indeed, suppose ¢(z,y) > 0
for x = (71,22) € X and y = (y1,2) € X. Let 2z be a vector with rational
coordinates, D = {z"}, and V, be a neighborhood of y. Since ¢(z,z°) < 0
for all z € X, it is impossible to find any strategy profile z', such that
(21, 2%) > 0. Hence, ¢ is O-recursively transfer lower semicontinuous in y
with respect to D. Therefore, by Theorem 3.3, there exists y € X, such that
d(xz,gy) < 0 for all x € X. In particular, letting z; = g; and keeping xo
varying, we have ua(y1,x2) < u2(91,92), Vre € Xo, and letting o = g2 and
keeping x; varying, we have uj(21,92) < ui(91,72), Ve1 € X1. Hence, this
game possesses a Nash equilibrium. In fact, the set of Nash equilibria consists
of all rational coordinates on (0, 1).

4. Full characterization of a fixed point

This section provides necessary and sufficient conditions for the existence of
a fixed point of a function defined on a set that may be finite, continuum,
non-convex, or non-compact.

Let X be a topological space. A correspondence F': X = X has a fixed
point z € X if ¢ € F(x). If F is a single-valued function f, then a fixed point
x of f is characterized by = = f(x).

We first recall the notion of diagonal transfer continuity introduced by
[38].

Definition 4.1 A function ¢ : X x X — R U {£oo} is diagonally transfer
continuous in y if, whenever p(z,y) > ¢(y,y) for x,y € X, there exists a
point z € X and a neighborhood V,, C X of y, such that ¢(z,y") > ¢(v',y)
for all y' € V,,.

Similarly, we can define the notion of recursive diagonal transfer conti-
nuity.

Definition 4.2 (Recursive diagonal transfer continuity) A function p: X X
X — RU{#£o0} is said to be recursively diagonally transfer continuous in y if,
whenever ¢(z,y) > ¢(y,y) for x,y € X, there exists a point 2° € X (possibly
20 = y) and a neighborhood V, of y, such that ¢(z,y") > ¢(y',y’) for all y' €
V, and for any finite subset {z!,..., 2™} C X with 2™ = z and ¢(z, 2™~ !) >
(p(szlvszl), (p(szl’zm72) > (p(zm72’zm72)7 o (p(zlyzO) > (p(ZO,ZO)
for m > 1.

Theorem 4.1 [Fixed point theorem] Let X be a non-empty and compact sub-
set of a metric space (E,d) and f : X — X be a function. Then, f has a
fized point if and only if the function ¢: X x X — R U {+oo}, defined by
o(xz,y) = —d(z, f(y)), is recursively diagonally transfer continuous in y.
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Proof Define ¢ : X x X — R by é(z,y) = d(y, f(y)) — d(z, f(y)). Then
d(xz,x) < 0 for all x € X. We can easily see ¢ is O-recursively transfer
lower semicontinuous in y if and only if ¢ is recursively diagonally transfer
continuous in y. Then, by Theorem 3.2, there exists ¢, such that ¢(z,y) <
0,Vx € X, or equivalently d(7, f(7)) < d(x, f(7)),Vx € X if and only if ¢ is
recursively diagonally transfer continuous in y. In particular, letting & = f(%),
we have d(y, f(7)) < d(f(y), f(y)) = 0 and thus § = f(g). Therefore, f has
a fixed point if and only if the function —d(z, f(y)) is recursively diagonally
transfer continuous in y. O

Theorem 4.1 can also be generalized by relaxing the compactness of X.

Definition 4.3 A function ¢: X x X — R U {£oo} is said to be recur-
sively diagonally transfer continuous in y with respect to D if, whenever
o(z,y) > p(y,y) for x € X and y € D, there exists a point z° € D (possibly
20 = y) and a neighborhood V, of y such that (1) ¢(2',y) > ¢(y,y) for
some ¢’ € D, and (2) ¢(z,9') > ¢(v',y’) for all ¥y € V, and for any finite
subset {z!,...,2™} C X with 2™ = 2z and p(z,2m71) > @(z™" 1 2m7L),
e(zm=L 2m=2) > (22, 2m72) L (2t 20) > (20, 20) for m > 1.

Theorem 4.2 Let X be a non-empty subset of a metric space (E,d) and f :
X — X be a function. Then, [ has a fized point if and only if there exists a
compact set D C X, such that —d(z, f(y)) is recursively diagonally transfer
continuous in y with respect to D.

Proof The proof is the same as in Theorem 3.3, and it is omitted here. [

Theorem 3.3 and Corollary 3.1 strictly generalize many existing fixed
point theorems in the literature, such as the well-known Browder fixed point
theorem and Tarski fixed point theorem in [39], as well as those in Fan [2,4],
Halpern [40,41], Halpern and Bergman [42], Reich [43], Istratescu [44], Tian
[45] and the references therein.

5. Full characterization of a saddle point

The saddle point theorem is an important tool in variational problems and
game theory. Much work has been dedicated to weakening its existence con-
ditions. However, almost all these results assume that functions under con-
sideration are defined on topological vector spaces. In this section, we present
some results on saddle points without imposing any form of convexity condi-
tions.

Definition 5.1 Let X be a topological space and ¢: X x X — RU{+oo} a
function. A pair (Z,7) in X x X is called a saddle point of ¢ in X x X if
o(T,y) < o(Z,y) < ¢(z,y) for all z € X and y € X.

The following is the classical result on saddle points.

Theorem 5.1 [von Neumann theorem| Let X be a non-empty, compact, and
convex subset in a Hausdorff locally convex topological vector space E, and
¢: X x X — RU{xoo} be a function. Suppose that
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(a) ¢ is lower semicontinuous and quasiconvex in y;
(b) @ is upper semicontinuous and quasiconcave in x.

Then, ¢ has a saddle point.

In addition, a lot of work has been done by weakening the conditions of
semicontinuity and/or quasiconcavity /quasiconvexity of von Neumann The-
orem. Our results characterize the existence of a saddle point for a general
topological space without assuming any kind of quasiconvexity or quasicon-
cavity.

Definition 5.2 Let X be a topological space. A function ¢: X x X — RU{£o0}
is said to be y-recursively transfer upper semicontinuous in z if —¢ is —v-
recursively transfer lower semicontinuous in z. We can similarly define ~-
recursive transfer upper semicontinuity in & with respect to D C X.

Theorem 5.2 Let X be a compact topological space, v € R, and ¢p: X x X —
R U {£o0} be a function with ¢(x,x) =~ for all x € X. Then, there exists
a saddle point (Z,7) € X x X if and only if ¢ is y-recursively transfer upper
semicontinuous in x and —vy-recursively transfer lower semicontinuous in y.

Proof Applying Theorem 3.2 to ¢(z,y), we have the existence of § € X, such
that ¢(x,7) < v,Vo € X. Let ¥(x,y) = —¢(y,x). Then, (z,z) = —v for
all x € X. In addition, since ¢ is ~-recursively transfer upper semicontinu-
ous in x, @ is —y-recursively transfer lower semicontinuous in z. Applying
Theorem 3.2 again to ¥(x,y), we have the existence of z € X, such that
¢(T,y) > v,Yy € X. Combining these inequalities, we have ¢(Z,7) < =
and ¢(Z,y) > =, and therefore, ¢(Z,y) = 7. Thus, (T, ) is a saddle point
satisfying ¢(Z,y) < ¢(T,7) < ¢(x,7) for all z € X and y € X. O

Theorem 5.2 can also be generalized by relaxing the compactness of X.

Theorem 5.3 Let X be a topological space, v € R, and ¢: X x X — RU{do00}
be a function with ¢(x,x) = for all x € X. Then there ezists a saddle point
(Z,y) € X x X if and only if there exist two compact sets D1 and Dsy in
X such that ¢ is y-recursively transfer upper semicontinuous in x with respect

to Dy and vy-recursively transfer lower semicontinuous in y with respect to
Ds.

Proof The proof is the same as in Theorem 3.3, and it is omitted here. [

6. Characterization of KKM principle

Now, we use Theorems 3.2 and 3.3 to generalize the FKKM theorem that is a
generalization of KKM lemma [46]. We begin by stating the following KKM
principle due to [4].

Theorem 6.1 (FKKM theorem) In a Hausdorff topological vector space, let
Y be a conver set and ) # X CY. Let F: X =Y be a correspondence, such
that the following holds:

(a) For each x € X, F(x) is a relatively closed subset of Y.
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(b) F is FS convex on X ;
(¢) There is a non-empty subset Xo of X, such thal the intersection

meXo F(x) is compact and Xg is contained in a compact convex subset
of Y.

Then, Nyex F(z) #0.

In addition, this theorem has been generalized in various forms in the
literature [34]. In the following, we provide a full characterization of non-
emptiness of intersection points of sets in FKKM theorem, where F' is a
correspondence mapping from X to X.

Theorem 6.2 Let X be a compact topological space and F : X = X be a
correspondence with x € F(z) for all x € X. Then, (,cx F(x) # 0 if and
only if the function ¢: X x X — RU {xoo} defined by

D if (x,y) €G
(,y) = {—i—oo otherwise
is y-recursively transfer lower semicontinuous in y. Here, v € R and G =
{(z,y) e X x X 1y € F(2)}.

Proof By Theorem 3.2, there exists a point y* € X, such that ¢(z,y*) < v
for all x € X if and only if ¢ is ~-recursively transfer lower semicontinuous
in y. However, by construction, (), .y F(z) # 0 if and only if there exists a
point z* € X, such that ¢(x,z*) <~ for all x € X. O

Similarly, we can drop the compactness of X, and have the following
theorem.

Theorem 6.3 Let X be a topological space and F : X = X be a correspon-
dence with x € F(x) for allxz € X. Then, (\,cx F(z) # 0 if and only if there
exists a compact subset D C X, such that ¢: X x X — RU{+o00} defined by

s ={1,, T

+o00  otherwise

is y-recursively transfer lower semicontinuous in y with respect to D. Here,

vyER and G={(z,y) e X x X :y € F(x)}.

7. Conclusions

The existing results on the existence of solutions for some important problems
from optimization and non-linear analysis are based on continuity-related
and convexity-related conditions, in addition to the assumption of topologi-
cal vector spaces. Besides, these results only provide sufficient conditions for
the existence problems, and no full characterization results have been given
in the literature. This paper fills this gap by replacing the assumptions con-
cerning continuity and convexity with a single condition that is necessary and
sufficient for the existence of solution for minimax inequalities, fixed points,
saddle points, or intersection points defined on arbitrary topological spaces
that may be discrete, continuum, non-compact or non-convex.
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The basic transfer method is systematically developed in [28,38,47-49]
for studying the maximization of binary relations that may be non-total or
non-transitive and the existence of equilibrium in discontinuous games. These
papers, especially Zhou and Tian [49], have developed three types of trans-
fers: transfer continuities, transfer convexities, and transfer transitivities to
study the maximization of binary relations and the existence of equilibrium
in games with discontinuous and/or non-quasiconcave payoffs. Various no-
tions of transfer continuities, transfer convexities and transfer transitivities
provide complete solutions to the question of the existence of maximal ele-
ments for complete preorders and interval orders (cf. Tian [47] and Tian and
Zhou [48]).

The notion of recursive transfer continuity extends usual transfer con-
tinuity from single transfer to allowing recursive (sequential) transfers. In-
corporating recursive transfers into various transfer continuities can also be
used to obtain full characterization results for many other solution problems.
Indeed, transfer irreflexive lower continuity (TILC) that shares the same fea-
ture as recursive transfer continuities has been introduced in [50] for study-
ing the existence of maximal elements for irreflexive binary relations. Refs.
[51,52] provide full characterizations of the existence of Nash equilibrium in
general games with arbitrary (topological) strategy spaces and competitive
equilibrium, respectively.
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